Regioselectivity and enantioselectivity of naphthalene dioxygenase during arene cis-dihydroxylation: control by phenylalanine 352 in the alpha subunit.

نویسندگان

  • R E Parales
  • S M Resnick
  • C L Yu
  • D R Boyd
  • N D Sharma
  • D T Gibson
چکیده

The naphthalene dioxygenase (NDO) system catalyzes the first step in the degradation of naphthalene by Pseudomonas sp. strain NCIB 9816-4. The enzyme has a broad substrate range and catalyzes several types of reactions including cis-dihydroxylation, monooxygenation, and desaturation. Substitution of valine or leucine at Phe-352 near the active site iron in the alpha subunit of NDO altered the stereochemistry of naphthalene cis-dihydrodiol formed from naphthalene and also changed the region of oxidation of biphenyl and phenanthrene. In this study, we replaced Phe-352 with glycine, alanine, isoleucine, threonine, tryptophan, and tyrosine and determined the activity with naphthalene, biphenyl, and phenanthrene as substrates. NDO variants F352W and F352Y were marginally active with all substrates tested. F352G and F352A had reduced but significant activity, and F352I, F352T, F352V, and F352L had nearly wild-type activities with respect to naphthalene oxidation. All active enzymes had altered regioselectivity with biphenyl and phenanthrene. In addition, the F352V and F352T variants formed the opposite enantiomer of biphenyl cis-3,4-dihydrodiol [77 and 60% (-)-(3S,4R), respectively] to that formed by wild-type NDO [>98% (+)-(3R,4S)]. The F352V mutant enzyme also formed the opposite enantiomer of phenanthrene cis-1,2-dihydrodiol from phenanthrene to that formed by biphenyl dioxygenase from Sphingomonas yanoikuyae B8/36. A recombinant Escherichia coli strain expressing the F352V variant of NDO and the enantioselective toluene cis-dihydrodiol dehydrogenase from Pseudomonas putida F1 was used to produce enantiomerically pure (-)-biphenyl cis-(3S,4R)-dihydrodiol and (-)-phenanthrene cis-(1S,2R)-dihydrodiol from biphenyl and phenanthrene, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme.

The three-component naphthalene dioxygenase (NDO) enzyme system carries out the first step in the aerobic degradation of naphthalene by Pseudomonas sp. strain NCIB 9816-4. The three-dimensional structure of NDO revealed that several of the amino acids at the active site of the oxygenase are hydrophobic, which is consistent with the enzyme's preference for aromatic hydrocarbon substrates. Althou...

متن کامل

Applications of biocatalytic arene ipso,ortho cis-dihydroxylation in synthesis.

The dearomatising dihydroxylation of aromatic molecules mediated by arene dioxygenase enzymes can provide cyclohexadiene-diols that are versatile starting materials for organic synthesis. Whereas oxidation of a substituted arene to give its ortho,meta-dihydrodiol has been demonstrated for numerous substrates and dioxygenases, formation of ipso,ortho-dihydrodiols has historically been underutili...

متن کامل

Characterization of a naphthalene dioxygenase endowed with an exceptionally broad substrate specificity toward polycyclic aromatic hydrocarbons.

In Sphingomonas CHY-1, a single ring-hydroxylating dioxygenase is responsible for the initial attack of a range of polycyclic aromatic hydrocarbons (PAHs) composed of up to five rings. The components of this enzyme were separately purified and characterized. The oxygenase component (ht-PhnI) was shown to contain one Rieske-type [2Fe-2S] cluster and one mononuclear Fe center per alpha subunit, b...

متن کامل

Structural basis for regioselectivity and stereoselectivity of product formation by naphthalene 1,2-dioxygenase.

Rieske oxygenase (RO) systems are two- and three-component enzyme systems that catalyze the formation of cis-dihydrodiols from aromatic substrates. Degradation of pollutants in contaminated soil and generation of chiral synthons have been the major foci of RO research. Substrate specificity and product regio- and stereoselectivity have been shown to vary between individual ROs. While directed e...

متن کامل

Aspartate 205 in the catalytic domain of naphthalene dioxygenase is essential for activity.

The naphthalene dioxygenase enzyme system carries out the first step in the aerobic degradation of naphthalene by Pseudomonas sp. strain NCIB 9816-4. The crystal structure of naphthalene dioxygenase (B. Kauppi, K. Lee, E. Carredano, R. E. Parales, D. T. Gibson, H. Eklund, and S. Ramaswamy, Structure 6:571-586, 1998) indicates that aspartate 205 may provide the most direct route of electron tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 182 19  شماره 

صفحات  -

تاریخ انتشار 2000